
MATH 54 − MOCK MIDTERM 2

PEYAM RYAN TABRIZIAN

Name:

Instructions: This is a mock midterm and it’s designed to give you an
idea of what the actual midterm will look like.

1 10
2 20
3 5
4 5
5 10
6 10
7 10
8 5
9 10
10 10
11 5
Total 100

Date: Friday, July 13th, 2012.
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1. (10 points, 2 points each)

Label the following statements as T or F.

NOTE: In this question, you do NOT have to show your work!
Don’t spend too much time on each question!

(a) If dim(V ) = 3 and u and v are two vectors in V , then {u,v}
cannot be linearly independent!

(b) If T is a linear transformation from R2 to R2, and T is onto,
then T is also one-to-one.

(c) If A is a m× n matrix, then Col(A) is a subspace of Rn.

(d) If
P

C ← B is the change-of-coordinates matrix fromB = {b1,b2}

to C = {c1, c2} then
P

C ← B=
[
[c1]B [c2]B

]
(e) The Span of any set of vectors is always a vector space.
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2. (20 points, 5 points each) Label the following statements as TRUE
or FALSE. In this question, you HAVE to justify your answer!!!

This means:

- If the answer is TRUE, you have to explain WHY it is true
(possibly by citing a theorem)

- If the answer is FALSE, you have to give a specific COUN-
TEREXAMPLE. You also have to explain why the counterex-
ample is in fact a counterexample to the statement!

(a) The set of 2×2 matrices such that det(A) = 0 is a vector space.

(b) A 4× 5 matrix A cannot be invertible

Hint: How big is Nul(A)?
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(c) If A =

[
1 2
3 4

]
, the set of 2 × 2 matrices B such that AB =[

0 0
0 0

]
is a vector space.

(d) The set {1− 2t+ t2, 3− 5t+ 4t2, 2t+ 3t2} is a basis for P2
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3. (5 points) Find the matrix of the linear transformation T : R2 → R2

which first reflects points in R2 about the line y = x and then rotates
them by 180 degrees (π radians) counterclockwise.
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4. (5 points) A 2 × 2 matrix is called symmetric if AT = A. Find a
basis for the vector space V of all 2× 2 symmetric matrices. Show
that the basis you found is in fact a basis!

Hint: What does a general 2× 2 symmetric matrix look like?
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5. (10 points) For the following matrix A, find a basis for Nul(A),
Row(A), Col(A), and find Rank(A):

A =


3 −1 7 3 9
−2 2 −2 7 6
−5 9 3 3 4
−2 6 6 3 7

 ˜

3 −1 7 3 9
0 2 4 0 3
0 0 0 1 1
0 0 0 0 0
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6. (10 points) Let B =

{[
−1
8

]
,

[
1
−5

]}
, and C =

{[
1
4

]
,

[
1
1

]}
be

bases for R2.

(a) Find the change-of-coordinates matrix from B to C, namely:
P

C ← B

(b) Calculate [x]C given [x]B =

[
2
3

]
.
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7. (10 points) Let V = Span {ex, ex cos(x), ex sin(x)}, and define T :
V → V by:

T (y) = y′ + y

(a) Show T is linear

(b) Find the matrix of T with respect to the basisB = {ex, ex cos(x), ex sin(x)}
for V .

Note: Don’t freak out! I know this is a brand new problem, but
just do the same think you usually do to find matrices of linear
transformations!
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8. (5 points) Find the largest interval (a, b) on which the following
differential equation has a unique solution:

sin(x)y′′ +
(√

2− x
)
y′ = ex

with

y
(π
2

)
= 4, y′

(π
2

)
= 0
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9. (10 points) Solve the following differential equation:

y′′′ − 12y′′ + 41y′ − 42y = 0

Hint: 42 = 2× 3× 7
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10. (10 points)
(a) Solve y′′ + 4y′ + 4y = e3t using undetermined coefficients

(b) Solve y′′ + y = tan(t) using variation of parameters

Note: You may need to use the fact that tan(t) = sin(t)
cos(t)

. Also

you may use the fact that
∫ sin2(t)

cos(t)
dt = ln

∣∣∣ cos(t)
sin(t)−1

∣∣∣− sin(t).



MATH 54 − MOCK MIDTERM 2 13

11. (5 points) Suppose u,v,w are linearly dependent vectors (in V ) and
T : V → W is a linear transformation. Show that T (u), T (v), T (w)
are also linearly dependent.

Hint: Write down what it means for 3 vectors to be linearly de-
pendent!


